Literature Cited

Literature Cited
1.  Nanthakumar K, Plumb VJ, Epstein AE, et al. Resumption of Electrical Conduction in Previously Isolated Pulmonary Veins: Rationale for a Different Strategy? Circulation. March 16, 2004 2004;109(10):1226-1229.

2.  Shah DD, Haïssaguerre MM, Jaïs PP, et al. High-density mapping of activation through an incomplete isthmus ablation line. Circulation. 1999;99(2):211-215.

3.  Kannel WB, Wolf PA, Benjamin EJ, et al. Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: population-based estimates. Am J Cardiol. Oct 16 1998;82(8A):2N-9N.

4.  Jackman WM, Wang XZ, Friday KJ, et al. Catheter ablation of accessory atrioventricular pathways (Wolff-Parkinson-White syndrome) by radiofrequency current. N Engl J Med. June 6, 1991 1991;324(23):1605-1611.

5.  Jackman WM, Beckman KJ, McClelland J H, et al. Treatment of supraventricular tachycardia due to atrioventricular nodal reentry, by radiofrequency catheter ablation of slow-pathway conduction. N Engl J Med. July 30, 1992 1992;327(5): 313-318.

6.  Steven M, Ben D, Eric T, et al. Survey of Physician Experience, Trends and Outcomes with Atrial Fibrillation Ablation. Journal of Interventional Cardiac Electrophysiology. 2005;V12(3):213-220.

7.  Pappone C, Santinelli V. - The Who, What, Why, and How-To Guide for Circumferential Pulmonary Vein Ablation. 2004;- 15:- 1230.

8.  Oral H, Pappone C, Chugh A, et al. Circumferential Pulmonary-Vein Ablation for Chronic Atrial Fibrillation. N Engl J Med. March 2, 2006 2006;354(9): 934-941.

9.  Fisher J D, Spinelli MA, Mook herjee D, et al. Atrial Fibrillation Ablation: Reaching the Mainstream. Pacing and Clinical Electrophysiology. 2006;29(5):523-537.

10. Haines D. Biophysics of Ablation:. Application to Technology. Journal of Cardiovascular Electrophysiology. 2004;15(s10):S2-S11.

11. Eick OJ, Gerritse B, Schumacher B. Popping Phenomena in Temperature-Controlled Radiofrequency Ablation: When and Why Do They Occur? Pacing and Clinic al Electrophysiology. 2000;23(2):253-258.

12. Lai YC, Choy YB, Haemmerich D, et al. Lesion size estimator of cardiac radiofrequency ablation at different common locations with different tip temperatures. IEEE Trans Biomed Eng. Oct 2004;51(10):1859-1864.

13. Panescu D, Whayne JG, Fleischman SD, et al. Three-dimensional finite element analysis of current density and temperature distributions during radio-frequency ablation. IEEE Trans Biomed Eng. 1995;42(9):879-890.

14. Labonte S. Numerical model for radio-frequency ablation of the endocardium and its experimental validation. IEEE Trans Biomed Eng. Feb 1994;41(2):108-115.

15. Jain MK, Tomassoni G, Riley RE, et al. Effect of skin electrode location on radiofrequency ablation lesions: An in vivo and a three-dimensional finite element study. Journal of Cardiov ascular Electrophysiology. Dec 1998;9(12):1325-1335.

16. Jain MK, Wolf PD. In vitro temperature map of cardiac ablation demonstrates the effect of flow on lesion development. Annals of Biomedical Engineering. Sep 2000;28(9): 1066-1074.

17. Jain MK, Wolf PD. A three-dimensional finite element model of radiofrequency ablation with blood flow and its experimental validation. Annals of Biomedical Engineering. Sep 2000;28(9): 1075-1084.

18. Jain MK, Wolf PD. Temperature-controlled and constant-power radio-frequency ablation: What affects lesion growth? Ieee Transactions on Biomedical Engineering. Dec 1999;46(12):1405-1412.

19. Ellen H, Petra N, Christopher R, et al. New Mapping Technology for Atrial Tachycardias. Journal of Interventional Cardiac Electrophysiology. 2000;V4(0):117-120.

20. Nakagawa H, Jackman WM. Use of a Three-Dimensional, Nonfluoroscopic Mapping System for Catheter Ablation of Typical Atrial Flutter. Pacing and Clinical Electrophysiology. 1998;21(6):1279-1286.

21. Packer DL. Three-Dimensional Mapping in Interventional Electrophysiology: Techniques and Technology. Journal of Cardiovascular Electrophysiology. 2005;16(10):1110-1116.

22. Meyer SA, Barold HS, Dixon-Tulloch EG, et al. A novel nonfluoroscopic multicatheter tracking method. Circulation. Oct 27 1998;98(17):299-299.

23. Callans DJ, Gerstenfeld EP, Dixit S, et al. Efficacy of Repeat Pulmonary Vein Isolation Procedures in Patients with Recurrent Atrial Fibrillation. Journal of Cardiovascular Electrophysiology. 2004;15(9):1050-1055.

24. Bahnson TD, Teplitsky L, Persanowski C. Radiofrequency energy delivery at the pulmonary vein os can produce rapid elevation of luminal esophageal temperature. Heart Rhythm. 2005; 2(5S1):S19.

25. Cummings JE. Assessment of Temperature, Proximity, and Course of the Esophagus During Radiofrequency Ablation Within the Left Atrium. Circulation. 2005;112(4):459.

26. Cummings JE, Schweikert RA, Saliba WI, et al. Brief Communication: Atrial-Esophageal Fistulas after Radiofrequency Ablation. Ann Intern Med. April 18, 2006 2006;144(8): 572-574.

27. Pappone C, Oral H, Santinelli V, et al. Atrio-Esophageal Fistula as a Complication of Percutaneous Transcatheter Ablation of Atrial Fibrillation. Circulation. June 8, 2004 2004;109(22):2724-2726.

28. Perzanowski C, Teplitsky L, Hranitzky PM, et al. Real-Time Monitoring of Luminal Esophageal Temperature During Left Atrial Radiofrequency Catheter Ablation for Atrial Fibrillation: Observations About Esophageal Heating During Ablation at the Pulmonary Vein Ostia and Posterior Left Atrium. Journal of Cardiovascular Electrophysiology. 2006;17(2):166-170.

29. Morton JJB, Sanders PP, Byrne MMJ, et al. Phased-Array intracardiac echocardiography to guide radiofrequency ablation in the left atrium and at the pulmonary vein ostium. Journal of cardiovascular electrophysiology. 2001; 12(3):343-348.

30. Nanda NC, Miller AP. Principles of Intracardiac Echocardiography. Journal of Interventional Cardiac Electrophysiology. 2005;13(0):7-10.

31. Cooper JM, Epstein LM. Use of Intracardiac Echocardiography to Guide Ablation of Atrial Fibrillation. Circulation. December 18, 2001 2001;104(25):3010-3013.

32. Fahey BJ, Nightingale KR, McAleavey SA, et al. Acoustic radiation force impulse imaging of myocardial radiofrequency ablation: initial in vivo results. IEEE Trans Ultrason Ferroelectr Freq Control. Apr 2005;52(4):631-641.

33. Hsu SJ, Wolf PD, Fahey BJ, et al. In vivo acoustic radiation force impulse imaging of cardiac ablations, 2005.

34. Walker W, F. , Trahey G, E. Speckle coherence and implications for adaptive imaging. The Journal of the Acoustical Society of America. 1997;101(4):1847-1858.

35. Jorgen Arendt J. A new calculation procedure for spatial impulse responses in ultrasound. The Journal of the Acoustical Society of America. 1999; 105(6):3266-3274.

36. Kasai C, Namekawa K, Koyano A, et al. Real-time two-dimensional blood flow imaging using an autocorrelation technique. IEEE Trans Sonics Ultrasonics. 1985;SU-32(3): 458-464.

37. Nyborg WLM. Acoustic streaming. In: Mason WP, ed. Physical Acoustics. Vol IIB-11. New York: Academic Press Inc; 1965: 265-331.

38. Torr GR. The acoustic radiation force. American J ournal of Physics. 1984; 52(5):402-408.

39. Fahey BJ, Nightingale KK, Nelson RC, et al. Acoustic radiation force impulse imaging of the abdomen: demonstration of feasibility and utility. Ultrasound in medicine & biology. 2005; 31(9):1185-1198.

40. Palmeri ML, Nightingale KK. On the thermal effects associated with radiation force imaging of soft tissue. IEEE Trans Ultrason Ferroelectr Freq Control. 2004; 51(5):551-565.

41. Herman BA, Harris GR. Models and regulatory considerations for transient temperature rise during diagnostic ultrasound pulses. Ultrasound in medicine & biology. 2002;28(9): 1217-1224.